6,835 research outputs found

    Detonation interaction with an interface

    Get PDF
    Detonation interaction with an interface was investigated, where the interface separated a combustible from an oxidizing or inert mixture. The ethylene-oxygen combustible mixture had a fuel-rich composition to promote secondary combustion with the oxidizer in the turbulent mixing zone (TMZ) that resulted from the interaction. Sharp interfaces were created by using a nitro-cellulose membrane to separate the two mixtures. The membrane was mounted on a wood frame and inserted in the experimental test section at a 45° angle to the bulk flow direction. The membrane was destroyed by the detonation wave. The interaction resulted in a transmitted and reflected wave at a node point similar to regular shock refraction. A detonation refraction analysis was carried out to compare with the measured shock angles. It was observed that the measured angle is consistently lower than the predicted value. An uncertainty analysis revealed possible explanations for this systematic variation pointing to factors such as the incident wave curvature and the role of the nitro-cellulose diaphragm. Analysis of the TMZ and Mach stem formed from the reflection of the transmitted shock wave off the solid boundary were carried out and found to justify the size and strength of these features as a function of the test gas composition. The role of secondary combustion in the TMZ was also investigated and found to have a small influence on the wave structure

    Semi-Automated SVG Programming via Direct Manipulation

    Full text link
    Direct manipulation interfaces provide intuitive and interactive features to a broad range of users, but they often exhibit two limitations: the built-in features cannot possibly cover all use cases, and the internal representation of the content is not readily exposed. We believe that if direct manipulation interfaces were to (a) use general-purpose programs as the representation format, and (b) expose those programs to the user, then experts could customize these systems in powerful new ways and non-experts could enjoy some of the benefits of programmable systems. In recent work, we presented a prototype SVG editor called Sketch-n-Sketch that offered a step towards this vision. In that system, the user wrote a program in a general-purpose lambda-calculus to generate a graphic design and could then directly manipulate the output to indirectly change design parameters (i.e. constant literals) in the program in real-time during the manipulation. Unfortunately, the burden of programming the desired relationships rested entirely on the user. In this paper, we design and implement new features for Sketch-n-Sketch that assist in the programming process itself. Like typical direct manipulation systems, our extended Sketch-n-Sketch now provides GUI-based tools for drawing shapes, relating shapes to each other, and grouping shapes together. Unlike typical systems, however, each tool carries out the user's intention by transforming their general-purpose program. This novel, semi-automated programming workflow allows the user to rapidly create high-level, reusable abstractions in the program while at the same time retaining direct manipulation capabilities. In future work, our approach may be extended with more graphic design features or realized for other application domains.Comment: In 29th ACM User Interface Software and Technology Symposium (UIST 2016

    Greater response variability in adolescents is associated with increased white matter development.

    Get PDF
    Adolescence is a period of learning, exploration, and continuous adaptation to fluctuating environments. Response variability during adolescence is an important, understudied, and developmentally appropriate behavior. The purpose of this study was to identify the association between performance on a dynamic risky decision making task and white matter microstructure in a sample of 48 adolescents (14-16 years). Individuals with the greatest response variability on the task obtained the widest range of experience with potential outcomes to risky choice. When compared with their more behaviorally consistent peers, adolescents with greater response variability rated real-world examples of risk taking behaviors as less risky via self-report. Tract-Based Spatial Statistics (TBSS) were used to examine fractional anisotropy (FA) and mean diffusivity (MD). Greater FA in long-range, late-maturing tracts was associated with higher response variability. Greater FA and lower MD were associated with lower riskiness ratings of real-world risky behaviors. Results suggest that response variability and lower perceived risk attitudes of real-world risk are supported by neural maturation in adolescents

    Detonation interaction with a diffuse interface and subsequent chemical reaction

    Get PDF
    We have investigated the interaction of a detonation with an interface separating a combustible from an oxidizing mixture. The ethylene-oxygen combustible mixture had a fuel-rich composition to promote secondary combustion with the oxidizer in the turbulent mixing zone that resulted from the interaction. Diffuse interfaces were created by the formation of a gravity current using a sliding valve that initially separated the test gas and combustible mixture. Opening the valve allowed a gravity current to develop before the detonation was initiated. By varying the delay between opening the valve and initiating the detonation it was possible to achieve a wide range of interface conditions. The interface orientation and thickness with respect to the detonation wave have a profound effect on the outcome of the interaction. Diffuse interfaces result in curved detonation waves with a transmitted shock and following turbulent mixing zone. The impulse was measured to quantify the degree of secondary combustion, which accounted for 1–5% of the total impulse. A model was developed that estimated the volume expansion of a fluid element due to combustion in the turbulent mixing zone and predicted the resulting impulse increment

    Computer-guided concentration-controlled trials in autoimmune disorders

    Get PDF
    A randomized concentration-controlled clinical trial (RCCCT) is an alternate experimental design to the standard dose-controlled study. In a RCCCT, patients are randomly assigned to predefined plasma or blood drug concentration ranges (low, medium, and high). With the caveat that concentration ranges are sufficiently separated, this design should enhance the ability to discover important concentration response relationships. FK-506, a potent and promising immunosuppressive agent for prevention and treatment of graft rejection, has shown significant clinical activity in some immune-mediated disorders. To implement the RCCCT design, a novel FK-506 intelligent dosing system (IDS) was used to guide all doses to prospectively achieve the target concentration range specified in the study protocol. Patients enrolled in these trials suffered from a variety of autoimmune disorders, including multiple sclerosis, primary biliary cirrhosis, psoriasis, autoimmune chronic active hepatitis, and nephrotic syndrome. We observed excellent predictive performance of the IDS for all patients. The accuracy (mean prediction error) of the IDS was −0.022 ng/ml and the precision (standard deviation of the prediction error) was 0.119 ng/ml. Thus, the IDS is both accurate and reproducible for autoimmune patients. We conclude that the RCCCT design, guided by an accurate and precise IDS, is an informative and cost-effective approach for evaluation of efficacy and safety of effective but highly toxic agents. © 1993 Raven Press, Ltd., New York

    An objective function exploiting suboptimal solutions in metabolic networks

    Get PDF
    Background: Flux Balance Analysis is a theoretically elegant, computationally efficient, genome-scale approach to predicting biochemical reaction fluxes. Yet FBA models exhibit persistent mathematical degeneracy that generally limits their predictive power. Results: We propose a novel objective function for cellular metabolism that accounts for and exploits degeneracy in the metabolic network to improve flux predictions. In our model, regulation drives metabolism toward a region of flux space that allows nearly optimal growth. Metabolic mutants deviate minimally from this region, a function represented mathematically as a convex cone. Near-optimal flux configurations within this region are considered equally plausible and not subject to further optimizing regulation. Consistent with relaxed regulation near optimality, we find that the size of the near-optimal region predicts flux variability under experimental perturbation. Conclusion: Accounting for suboptimal solutions can improve the predictive power of metabolic FBA models. Because fluctuations of enzyme and metabolite levels are inevitable, tolerance for suboptimality may support a functionally robust metabolic network

    A Conjugate Study of Mean Winds and Planetary Waves Employing Enhanced Meteor Radars at Rio Grande, Argentina (53.8degS) and Juliusruh, Germany (54.6degN)

    Get PDF
    Two meteor radars with enhanced power and sensitivity and located at closely conjugate latitudes (54.6degN and 53.8degS) are employed for inter-hemispheric comparisons of mean winds and planetary wave structures. Our study uses data from June 2008 through May 2010 during which both radars provided nearly continuous wind measurements from approx.80 to 100 km. Monthly mean winds at 53.8degS exhibit a somewhat stronger westward mean zonal jet in spring and early summer at lower altitudes and no westward monthly mean winds at higher altitudes. In contrast, westward mean winds of approx.5-10 m/s at 54.6degN extend to above 96 km during late winter and early spring each year. Equatorward monthly mean winds extend approximately from spring to fall equinox at both latitudes, with amplitudes of approx.5-10 m/s and more rapid decreases in amplitude at 54.6degN at higher altitudes. Meridional mean winds are more variable at both latitudes during fall and winter, with both poleward and equatorward monthly means indicating longer-period variability. Planetary waves seen in the 2-day mean data are episodic and variable at both sites, exhibit dominant periodicities of approx.8-10 and 16-20 days and are more confined to late fall and winter at 54.6degN. At both latitudes, planetary waves in the two period bands coincide closely in time and exhibit similar horizontal velocity covariances that are positive (negative) at 54.6degN (53.8degS) during peak planetary wave responses

    Characterization of gravity current formation for the use in detonation refraction experiments

    Get PDF
    Detonation propagation through an interface is being studied at Caltech. In these experiments, the interface shape is determined by the gravity currents. This report presents an experimental study of the formation and the development of these gravity currents by an analog system in a water channel using water and salt water to simulate the density differences in detonation experiments. The major parameters such as the Reynolds number and the density difference were matched in both experiments to be able to compare the gravity current in the water channel and the gravity current in the Galcit detonation tube. In the present study, the gravity current was generated by the removal of a plate, and was visualized by adding food dye. The results confirm previous studies; Keulegan demonstrated in 1957 that the velocity of the gravity current is a function of the square root of the density difference. The interface is affect by the retracting of the plate which creates the wake effects. The Kelvin-Helmholtz instabilities on the upstream side of the gravity current create the visualized mixing zones. Finally, this study revealed how the gravity current interface into the Galcit detonation tube should develop and where the mixing zones should occur

    An improved ontological representation of dendritic cells as a paradigm for all cell types

    Get PDF
    The Cell Ontology (CL) is designed to provide a standardized representation of cell types for data annotation. Currently, the CL employs multiple is_a relations, defining cell types in terms of histological, functional, and lineage properties, and the majority of definitions are written with sufficient generality to hold across multiple species. This approach limits the CL’s utility for cross-species data integration. To address this problem, we developed a method for the ontological representation of cells and applied this method to develop a dendritic cell ontology (DC-CL). DC-CL subtypes are delineated on the basis of surface protein expression, systematically including both species-general and species-specific types and optimizing DC-CL for the analysis of flow cytometry data. This approach brings benefits in the form of increased accuracy, support for reasoning, and interoperability with other ontology resources. 104. Barry Smith, “Toward a Realistic Science of Environments”, Ecological Psychology, 2009, 21 (2), April-June, 121-130. Abstract: The perceptual psychologist J. J. Gibson embraces a radically externalistic view of mind and action. We have, for Gibson, not a Cartesian mind or soul, with its interior theater of contents and the consequent problem of explaining how this mind or soul and its psychological environment can succeed in grasping physical objects external to itself. Rather, we have a perceiving, acting organism, whose perceptions and actions are always already tuned to the parts and moments, the things and surfaces, of its external environment. We describe how on this basis Gibson sought to develop a realist science of environments which will be ‘consistent with physics, mechanics, optics, acoustics, and chemistry’

    Electron surface layer at the interface of a plasma and a dielectric wall

    Full text link
    We study the potential and the charge distribution across the interface of a plasma and a dielectric wall. For this purpose, the charge bound to the wall is modelled as a quasi-stationary electron surface layer which satisfies Poisson's equation and minimizes the grand canonical potential of the wall-thermalized excess electrons constituting the wall charge. Based on an effective model for a graded interface taking into account the image potential and the offset of the conduction band to the potential just outside the dielectric, we specifically calculate the potential and the electron distribution for magnesium oxide, silicon dioxide and sapphire surfaces in contact with a helium discharge. Depending on the electron affinity of the surface, we find two vastly different behaviors. For negative electron affinity, electrons do not penetrate into the wall and an external surface charge is formed in the image potential, while for positive electron affinity, electrons penetrate into the wall and a space charge layer develops in the interior of the dielectric. We also investigate how the electron surface layer merges with the bulk of the dielectric.Comment: 15 pages, 9 figures, accepted versio
    • 

    corecore